Skip to main content

Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x + 2y - z + 1 = 0 và điểm A(1; 1; 2). Gọi d là giao tuyến của 2 mặt phẳng (P) và (Oyz). Lập phương trình mặt phẳng (α) qua d và cách A một khoảng bằng 1.

Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x + 2y - z + 1 = 0 và điểm A(1; 1; 2).

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x + 2y - z + 1 = 0 và điểm A(1; 1; 2). Gọi d là giao tuyến của 2 mặt phẳng (P) và (Oyz). Lập phương trình mặt phẳng (α) qua d và cách A một khoảng bằng 1.


A.
(α): x = 0; (α): 2x + 2y - z - 1 = 0
B.
(α): x = 2; (α): -2x + 3y + z + 1 = 0
C.
(α): x = 0; (α): -2x - 2y + z - 1 = 0
D.
(α): x = 1; (α): -2x + 2y + z - 1 = 0
Đáp án đúng: C

Lời giải của Luyện Tập 365

Phương trình mặt phẳng (Oyz): x = 0 và B(0; 0; 1), C(0;-1;-1) thuộc d, phương trình mặt phẳng (α) có dạng: ax + by + cz + d = 0 (a2 + b2 + c2 ≠ 0).

Do (α) đi qua B, C nên :

\begin{cases} c+d=0\\ -b-c+d=0\\ \end{cases} 

<=> \begin{cases} d=-c\\ b=-2c\\ \end{cases} => (α): ax + (-2c)y + cz - c = 0

d(A,(α) = 1 <=> \frac{\left | a-2c+2c-c \right |}{\sqrt{a^{2}+4c^{2}+c^{2}}} = 1

<=> |a – c|2 = a2 + 5c2 <=> -ac = 2c2

Nếu c = 0 chọn a = 1 => b = 0, d = 0 => (α): x = 0

Nếu a = -2c chọn c = 1 thì a = -2, d = -1, b = -2 => (α): -2x - 2y + z - 1 = 0

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).