Skip to main content

Tìm k để hệ bất phương trình sau có nghiệm:  \(\left\{ \begin{array}{l}{\left| {x - 1} \right|^3} - 3x - k < 0\\\frac{1}{2}{\log _2}{x^2} + \frac{1}{3}{\log _2}{\left( {x - 1} \right)^3} \le 1\end{array} \right.\)

Tìm k để hệ bất phương trình sau có nghiệm:  \(\left\{ \begin{array}{l}{\left|

Câu hỏi

Nhận biết

Tìm k để hệ bất phương trình sau có nghiệm:  \(\left\{ \begin{array}{l}{\left| {x - 1} \right|^3} - 3x - k < 0\\\frac{1}{2}{\log _2}{x^2} + \frac{1}{3}{\log _2}{\left( {x - 1} \right)^3} \le 1\end{array} \right.\)


A.
\(k\ge-2\)
B.
\(k\ge-3\)
C.
\(k\ge-4\)
D.
\(k\ge-5\)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Điều kiện: x>1 (*)

Với đk (*) ta có: 

Bpt (2) tương đương: 

\(\begin{array}{l}
{\log _2}\sqrt {{x^2}} + {\log _2}\sqrt[3]{{{{\left( {x - 1} \right)}^3}}} \le 1 \Leftrightarrow x\left( {x - 1} \right) \le 2\\
\Leftrightarrow {x^2} - x - 2 \le 0 \Leftrightarrow - 1 \le x \le 2 \Leftrightarrow 1 < x \le 2
\end{array}\)

Với \(1 < x \le 2\) pt (1) tương đương: 

\({\left( {x - 1} \right)^3} - 3x - k < 0 \Leftrightarrow {x^3} - 3{x^2} + 3x - 1 - k < 0 \Leftrightarrow {x^3} - 3{x^2} - 1 < k\)

Xét \(f\left( x \right) = {x^3} - 3{x^2} - 1\) trên (1;2]

Ta có: \(f'\left( x \right) = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\left( {ktm} \right)\\x = 2\,\,\left( {tm} \right)\end{array} \right.\)

Ta có bảng biến thiên: (hs tự vẽ)

=> Từ BBT suy ra bpt (1) có nghiệm trên (1;2] khi và chỉ khi \(k \ge \mathop {\min }\limits_{\left( {1;2} \right]} f\left( x \right) \Leftrightarrow k \ge  - 5\)

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.