Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D.

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D.


A.
C(-1; 6); D(4;1) hoặc D(-8; 7).
B.
C(-1; 6); D(-4;1) hoặc D(-8; 7).
C.
C(-1; 6); D(4;1) hoặc D(8; 7).
D.
C(1; 6); D(4;1) hoặc D(-8; 7).
Đáp án đúng: A

Lời giải của Luyện Tập 365

                                              Gọi I là giao điểm của AC và BD=>IB = IC.

Mà IB⊥IC nên ∆IBC vuông cân tại I => \widehat{ICB}= 450.

BH⊥AD =>BH⊥BC=>∆HBC vuông cân tại B=>I là trung điểm của đoạn HC.

Do CH⊥BD và trung điểm I của CH thuộc BD nên tọa độ điểm C thỏa mãn hệ \left\{\begin{matrix}2(x+3)-(y-2)=0\\\frac{x-3}{2}+2\frac{y+2}{2}-6=0\end{matrix}\right.

Do đó C(-1; 6).

Ta có  \frac{IC}{ID}= \frac{IB}{ID}= \frac{BC}{AD}= \frac{1}{3}=>ID = 3IC=>CD = \sqrt{IC^{2}+ID^{2}}

= IC√10 = \frac{CH\sqrt{10}}{2}= 5√2.

Ta có D(6 – 2t; t) và CD = 5√2 suy ra (7 – 2t)2 + (t – 6)2 = 50⇔\begin{bmatrix}t=1\\t=7\end{bmatrix}

Do đó D(4;1) hoặc D(-8; 7).

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).