Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.


A.
d: x + y + 1 = 0; d: 7x + y + 25 = 0.
B.
d: x - y - 1 = 0; d: 7x - y - 25 = 0.
C.
d: x + y - 1 = 0; d: 7x + y - 25 = 0.
D.
d: x + y + 1 = 0; d: 7x + y - 25 = 0.
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(2; 1) và bán kính R = 2. (học sinh tự vẽ hình)

Đường thẳng d qua M(4; -3) có phương trình a(x - 4) + b(y + 3) = 0, a + b ≠ 0.

Vì IP = IQ = R nên ∆IPQ cân tại I, do đó ∆IPQ chỉ có thể vuông tại I. Kẻ IH ⊥ PQ tại H. Suy ra ∆IHP vuông cân tại H.

Do đó IH = \frac{IP}{\sqrt{2}} = \frac{R}{\sqrt{2}} = √2.

Từ đó suy ra: d(I,d) = √2 ⇔ \frac{\left|2a+b-4a+3b\right|}{\sqrt{a^{2}+b^{2}}} = √2.

                                     ⇔ a2 - 8ab + 7b2 = 0 ⇔ (a-b)(a-7b) = 0.
Với a = b, vì a2 + b2 ≠ 0, ta chọn a = 1, b = 1. Khi đó d: x + y - 1 = 0.

Với a = 7b, vì a2 + b2 ≠ 0, ta chọn a = 7, b = 1. Khi đó d: 7x + y - 25 = 0.

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phâ

    Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.