Skip to main content

Trong mặt phẳng tọa độ Oxy, cho điểm A(1 ; 0) và đường tròn (C) có phương trình: x2 + y2 – 2x + 4y – 5 = 0. Viết phương trình đường thẳng ∆ cắt (C) tại điểm M và N sao cho tam giác AMN vuông cân tại A.

Trong mặt phẳng tọa độ Oxy, cho điểm A(1 ; 0) và đường tròn (C) có phươn

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho điểm A(1 ; 0) và đường tròn (C) có phương trình: x2 + y2 – 2x + 4y – 5 = 0. Viết phương trình đường thẳng ∆ cắt (C) tại điểm M và N sao cho tam giác AMN vuông cân tại A.


A.
1: y = 1 ; ∆2 : y = -3
B.
1: y = -1 ; ∆2 : y = 3
C.
1: y = -1 ; ∆2 : y = -3
D.
1: y = 1 ; ∆2 : y = 3
Đáp án đúng: A

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(1 ; -2), R = √10

\overrightarrow{AI} (0 ; -2). Vì I và A cách đều M, N nên MN ⊥ AI, vậy phương trình MN có dạng: y = b

MN = 2 d(A , MN) = 2|b| ; d(I , MN) = |b + 2|;

d2(I,MN) + (\frac{MN}{2})2 = R2 ⇔ b2 + 2b – 3 = 0 ⇔ b = 1 v b = -3

Vậy phương trình ∆1: y = 1 ; ∆2 : y = -3

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.