Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} x^{3}-6x^{2}+13x=y^{3}+y+10\\ \sqrt{2x+y+5}-\sqrt{3-x-y}=x^{3}-3x^{2}-10y+ 6 \end{matrix}\right.  (x, y ∈  R).

Giải hệ phương trình:   (x, y ∈  R).

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} x^{3}-6x^{2}+13x=y^{3}+y+10\\ \sqrt{2x+y+5}-\sqrt{3-x-y}=x^{3}-3x^{2}-10y+ 6 \end{matrix}\right.  (x, y ∈  R).


A.
x = 2; y = 0
B.
x = 2; y = 1
C.
x = 1; y = 0
D.
x = -2; y = 0
Đáp án đúng: A

Lời giải của Luyện Tập 365

\left\{\begin{matrix} x^{3}-6x^{2}+13x=y^{3}+y+10\\ \sqrt{2x+y+5}-\sqrt{3-x-y}=x^{3}-3x^{2}-10y+ 6 \end{matrix}\right.

(1) ⇔ ( x - 2)3 + x - 2 = y3 + y( *)

Xét hàm số f(t) = t3 + t

Ta có f’(t) = 3t2 + 1 > 0, ∀t ∈ R =>f(t) đồng biến trên R

Do đó (*)⇔ y = x - 2

Thay y = x - 2 vào (2) ta được:

\sqrt{3x+3}-\sqrt{5-2x} = x3 – 3x2  - 10x + 26

\sqrt{3x+3} -3 + 1 - \sqrt{5-2x} = x- 3x2 - 10x + 24

\frac{3(x-2)}{\sqrt{3x+3}+3} + \frac{2(x-2)}{1+\sqrt{5-x}} = (x - 2)(x2 – x - 12)

\left [ \begin{matrix} {x=2}\\ {\frac{3}{\sqrt{3x+3}+3}+\frac{2}{1+\sqrt{5-2x}}=x^{}{2}-x-12}\: (3) \end{matrix}

Phương trình (3) vô nghiệm vì với \frac{-5}{2}≤ x  ≤  1 thì x2 – x - 12 < 0

Vậy hệ có nghiệm duy nhất x = 2; y = 0

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).