Skip to main content

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức: P=\small \frac{x^{2}y}{z^{3}}+\frac{y^{2}z}{x^{3}}+\frac{z^{2}x}{y^{3}}+\frac{4xyz}{xy^{2}+yz^{2}+zx^{2}}

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

Câu hỏi

Nhận biết

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

P=\small \frac{x^{2}y}{z^{3}}+\frac{y^{2}z}{x^{3}}+\frac{z^{2}x}{y^{3}}+\frac{4xyz}{xy^{2}+yz^{2}+zx^{2}}


A.
minP = \small \frac{16}{3}
B.
minP = 3
C.
minP = \small \frac{13}{3}
D.
minP = 4
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đặt: a=\small \frac{x}{z}; b=\small \frac{y}{x}; c=\small \frac{z}{y} => abc=1 và a+b+c ≥ 3

P=\small \frac{a^{2}}{c}+\frac{b^{2}}{a}+\frac{c^{2}}{b}+\frac{4}{ab+bc+ca}

Mà: \small a^{2}+c^{2}\geq 2ac => \small \frac{a^{2}}{c}\geq 2a-c

Tương tự: \small \frac{b^{2}}{a}\geq 2b-a ; \small \frac{c^{2}}{b}\geq 2c-b

Mặt khác: \small (a+b+c)^{2}\geq 3(ab+bc+ca)

Nên: P≥

(a+b+c) +\small \frac{12}{(a+b+c)^{2}}=\frac{4}{9}(a+b+c)+\frac{4}{9}(a+b+c)+\frac{12}{(a+b+c)^{2}}+\frac{1}{9}(a+b+c)\geq 4+\frac{1}{3}=\frac{13}{3}

Vậy minP = \small \frac{13}{3} xảy ra khi a=b=c=1 hay x=y=z

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.