Skip to main content

Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Gọi M, N, I lần lượt là trung điểm các đoạn thẳng AA’, AB, BC. Biết góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 600. Tính theo a thể tích khối chóp NAC’I và khoảng cách giữa 2 đường thẳng MN, AC’.

Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Gọi M, N, I lần lượt là trung điểm

Câu hỏi

Nhận biết

Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Gọi M, N, I lần lượt là trung điểm các đoạn thẳng AA’, AB, BC. Biết góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 600. Tính theo a thể tích khối chóp NAC’I và khoảng cách giữa 2 đường thẳng MN, AC’.


A.
V_{NAC'I}=\frac{a^{3}}{32};h=\frac{a\sqrt{5}}{8}
B.
V_{NAC'I}=\frac{a^{3}}{32};h=\frac{a\sqrt{3}}{8}
C.
V_{NAC'I}=\frac{a^{3}}{48};h=\frac{a\sqrt{3}}{8}
D.
V_{NAC'I}=\frac{a^{3}}{64};h=\frac{a\sqrt{5}}{8}
Đáp án đúng: B

Lời giải của Luyện Tập 365

CC' ⊥ (ABC), CI ⊥ AI => C'I ⊥ AI

=> \widehat{C'IC} = 60o => CC’ = CI.tan60o\frac{a\sqrt{3}}{2}

VNAC'I = VC’ANI \frac{1}{4}VC’ABC \frac{1}{12}CC’.SABC \frac{a^e_3}{32}

Khi đó \left\{\begin{matrix} MO//AC\\ MO=\frac{1}{2}AC \end{matrix}\right. và \left\{\begin{matrix} NI//AC\\ NI=\frac{1}{2}AC \end{matrix}\right. suy ra NI // MO, NI = MO

suy ra MOIN là hình bình hành

=> MN // OI => MN // (AC'I) => d(MN, AC’) = d(MN, (AC’I)) = d(N, (AC’I)) = h

V_{NAC'I}=\frac{a^{3}}{32}; S_{AIC'}=\frac{S_{AIC}}{cos60^{0}}=\frac{\frac{a^{2}\sqrt{3}}{8}}{\frac{1}{2}}=\frac{a^{2}\sqrt{3}}{4}

=> h = \frac{3V_{NAC'I}}{S_{AIC'}}=\frac{a\sqrt{3}}{8}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.