Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt phẳng (SAB) vuông góc với đáy, tam giác SAB cân tại S và SC tạo với đáy một góc 600. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng BD và SA theo a.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt phẳng (SAB) vuông góc v

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt phẳng (SAB) vuông góc với đáy, tam giác SAB cân tại S và SC tạo với đáy một góc 600. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng BD và SA theo a.


A.
VS.ABCD\frac{4\sqrt{17}}{3}a3   ;d(BD, SA) = 2\sqrt{\frac{19}{31}}a
B.
VS.ABCD = \frac{4\sqrt{17}}{3}a3  ;d(BD, SA) = 2\sqrt{\frac{17}{31}}a
C.
VS.ABCD = \frac{4\sqrt{17}}{3}a3; d(BD, SA) = 2\sqrt{\frac{15}{31}}a
D.
VS.ABCD = \frac{4\sqrt{15}}{3}a3; d(BD, SA) = 2\sqrt{\frac{15}{31}}a
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm AB. Do SAB cân tại S suy ra SH ⊥  AB, mặt khác (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD) và \widehat{SCH} = 60o

Ta có SH = CH.tan60\sqrt{CB^{2}+BH^{2}}.tan60= a\sqrt{15}

VS.ABCD\frac{1}{3} SH.SABCD = \frac{1}{3}a\sqrt{15} .4a2  = \frac{4\sqrt{15}}{3}a3

Qua A vẽ đường thẳng ∆ song song với BD. Gọi E là hình chiếu vuông góc của H lên ∆ và K là hình chiếu của H lên SE, khi đó ∆ ⊥ (SHE) => ∆ ⊥ HK suy ra

HK ⊥ (S, ∆).

Mặt khác, do BD // (S,∆) nên ta có:

d(BD, SA) = d(BD, (S,\dpi{80} \Delta)) = d(B, (S, ∆)) = 2d(H, (S,∆)) = 2HK

Ta có \widehat{EAH}=\widehat{DBA} = 450 nên tam giác EAH vuông cân tại E, suy ra

HE = \frac{AH}{\sqrt{2}} =\frac{a}{\sqrt{2}}

=> HK= \frac{HE.HS}{\sqrt{HE^{2}+HS^{2}}} = \frac{\frac{a}{\sqrt{2}}.a\sqrt{15}}{\sqrt{(\frac{a}{\sqrt{2}})^{2}+(a\sqrt{15})^{2}}} = \sqrt{\frac{15}{31}}a

Vậy d(BD, SA) = 2\sqrt{\frac{15}{31}}a

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}