Skip to main content

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với điểm A(2;-1) và hai đường phân giác trong của góc B và C lần lượt là ∆: x - 2y + 1 = 0 và d: x + y + 3 = 0. Gọi H là hình chiếu vuông góc của A lên cạnh BC. Tính độ dài đường cao AH của tam giác ABC.

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với điểm A(2;-1) và hai đường phân giác trong

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với điểm A(2;-1) và hai đường phân giác trong của góc B và C lần lượt là ∆: x - 2y + 1 = 0 và d: x + y + 3 = 0. Gọi H là hình chiếu vuông góc của A lên cạnh BC. Tính độ dài đường cao AH của tam giác ABC.


A.
AH = \frac{13}{\sqrt{17}}
B.
AH = \frac{1}{\sqrt{17}}
C.
AH = \frac{12}{\sqrt{17}}
D.
AH = \frac{2}{\sqrt{17}}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Do tính chất đường phân giác nên các điểm A1; A2 đối xứng với A qua ∆ và d phải nằm trên đường thẳng chứa cạnh BC.

Phương trình đường thẳng AA1\left\{\begin{matrix} x=2+t & & \\ y=-1-2t & & \end{matrix}\right.

Gọi E là giao điểm của ∆ và AA1

Khi đó tọa độ của E là nghiệm của hệ phương trình:

\left\{\begin{matrix} x=2+t & & \\ y=-1-2t & & \\ x-2y+1=0 & & \end{matrix}\right. → \left\{\begin{matrix} x=1 & & \\ y=1 & & \end{matrix}\right.

Suy ra E(1;1) do đó A1(0;3)

Phương trình đường thẳng AA2\left\{\begin{matrix} x=2+t & & \\ y=-1+t & & \end{matrix}\right.

Gọi F là giao điểm của d và AA2. Khi đó tọa độ của F là nghiệm của hệ phương trình: \left\{\begin{matrix} x=2+t & & \\ y=-1+t & & \\ x+y+3=0 & & \end{matrix}\right. → \left\{\begin{matrix} x=0 & & \\ y=-3 & & \end{matrix}\right.

Suy ra F(0;-3) do đó A2(-2; 5)

Do đó phương trình đường thẳng A1A2 (BC) là: I: 4x - y + 3 = 0

Vậy AH = d(A, I) = \frac{|4.2-1.(-1)+3|}{\sqrt{4^{2}+(-1)^{2}}} = \frac{12}{\sqrt{17}}.

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.