Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x2 + y2 + 2x - 6y + 2 = 0 và đường thẳng d: x + y - 2 = 0. Tìm các đỉnh của hình vuông ABCD nội tiếp đường tròn (C) biết đỉnh A thuộc d và có hoành độ dương . 

Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x2 + y2 + 2x - 6y + 2 = 0 và đường

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x2 + y2 + 2x - 6y + 2 = 0 và đường thẳng d: x + y - 2 = 0. Tìm các đỉnh của hình vuông ABCD nội tiếp đường tròn (C) biết đỉnh A thuộc d và có hoành độ dương . 


A.
 A(1; -1); C(-3; 5); B(-3; 1); D(-1; -5)
B.
 A(1; 1); C(-3; 5); B(-3; 1); D(1; 5)
C.
A(1; 1); C(-3; 5); B(1; 5) ; D(-3; 1) 
D.
A(1; 1); C(-3; 5); B(1; 5); D(-3; 1) hoặc A(1; 1); C(-3; 5); B(-3; 1); D(1; 5)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đường trìn (x + 1)2 + ( y - 3)2 = 8 có tâm I(-1; 3), bán kính R = 2√2

Điểm A thuộc d nên A(x; 2 - x)

Ta có IA2 = 8 => ( x + 1)2 + (1 + x)2 = 8

⇔ ( x + 1)2 = 4 ⇔ x = 1 hoặc x = -3 (loại)

Vậy A(1; 1) => C(-3; 5).

Đường thẳng BD đi qua I(-1; 3) vuông góc với IA nên nhận

\overrightarrow{IA} = (2; -2) // \overrightarrow{u}(1; -1) làm véctơ pháp tuyến có phương trình: x - y + 4 = 0

+ Tọa độ điểm B, D thỏa mãn phương trình:

 ( x + 1)2 + (x + 1)2 = 8 ⇔ ( x + 1)2 = 4 ⇔ x = 1 hoặc x = -3

+Với x =  1 => y = 5

+Với x = -3 => y = 1

Vậy B(1; 5) => D(-3; 1) hoặc ngược lại.

 

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).