Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm I(1; 1), M(-2; 2) và N(2; -2). Tìm tọa độ đỉnh A và B của hình vuông ABCD sao cho I  là tâm hình vuông đó, hai điểm M và N thứ tự nằm trên cạnh AB và CD.

Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm I(1; 1), M(-2; 2) và N(2; -2). Tìm

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm I(1; 1), M(-2; 2) và N(2; -2). Tìm tọa độ đỉnh A và B của hình vuông ABCD sao cho I  là tâm hình vuông đó, hai điểm M và N thứ tự nằm trên cạnh AB và CD.


A.
A(-3;-1), B(1;5)
B.
A(-3;1), B(1;5)
C.
A(1;5), B(-3;1)
D.
Cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi P = NI ∩ AB  => P = Đ1(N)  => P = (0; 4)

- Phương trình đường thẳng AB là phương trình đi qua M , P: x - y + 4 = 0

Gọi H là hình chiếu vuông góc của I trên AB  nên IH = d(I; AB) = 2√2

Phương trình đường thẳng IH: x + y - 2 = 0 => Tọa độ H = (-1; 3)

Điểm I là tâm hình vuông ABCD => HA = HB = HI

=> A, B nằm trên đường tròn (H, R = 2√2)

\Rightarrow Hoành độ, tung độ điểm A, B là nghiệm hệ:

\left\{\begin{matrix} x-y+4=0 & \\ (x+1)^{2}+(y-3)^{2} =8& \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=5 & \end{matrix}\right. hoặc \left\{\begin{matrix} x=-3 & \\ y=1& \end{matrix}\right.

Đáp số: A(1; 5), B(-3; 1) và A(-3; 1), B(1; 5)

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.