Skip to main content

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy tìm trên đường thẳng ∆ một điểm M sao cho |\overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất.

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy tìm trên đường thẳng ∆ một điểm M sao cho |\overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất.


A.
M(- \frac{2}{5}\frac{19}{6})
B.
M(- \frac{2}{5}; - \frac{19}{5})
C.
M(- \frac{2}{5}\frac{19}{5})
D.
M(\frac{2}{5}\frac{19}{5})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi I là trung điểm của AB, J là trung điểm của IB. Khi đó I(1; -2); J(\frac{5}{2}; -3)

Ta có: \overrightarrow{MA} + 3\overrightarrow{MB} = (\overrightarrow{MA} +\overrightarrow{MB}) + 2\overrightarrow{MB} = 2\overrightarrow{MI} + 2\overrightarrow{MB} = 4\overrightarrow{MJ}

Vì vậy | \overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất khi M là hình chiếu vuông góc của J trên đường thẳng ∆

Đường thẳng JM qua J và vuông góc với ∆ có phương trình: 2x - y - 8 = 0

Tọa độ điểm M là nghiệm của hệ: \left\{\begin{matrix} x+2y-3=0 & & \\ 2x-y-8=0 & & \end{matrix}\right. ⇔ \left\{\begin{matrix} x=-\frac{2}{5} & & \\ y=\frac{19}{5} & & \end{matrix}\right.

Vậy M(- \frac{2}{5}\frac{19}{5})

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.