Skip to main content

Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) và ∆ là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên ∆. Viết phương trình đường thẳng ∆, biết khoảng cách từ H đến trục hoành bằng AH.

Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) và ∆ là đường thẳng đi qua O. Gọi H là

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) và ∆ là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên ∆. Viết phương trình đường thẳng ∆, biết khoảng cách từ H đến trục hoành bằng AH.


A.
Phương trình đường thẳng ∆ là (√5 – 1).x – 2sqrt{sqrt{5}-2} y = 0 hoặc (√5 – 1)x + 2sqrt{sqrt{5}-2}y = 0.
B.
Phương trình đường thẳng ∆ là (√5 + 1).x – 2sqrt{sqrt{5}-2} y = 0 hoặc (√5 – 1)x + 2sqrt{sqrt{5}-2}y = 0.
C.
Phương trình đường thẳng ∆ là (√5 – 1).x – 2sqrt{sqrt{5}-2} y = 0 hoặc (√5 + 1)x + 2sqrt{sqrt{5}-2}y = 0.
D.
Phương trình đường thẳng ∆ là (√5 – 1).x + 2sqrt{sqrt{5}-2} y = 0 hoặc (√5 – 1)x - 2sqrt{sqrt{5}-2}y = 0.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi tọa độ H là (a; b), ta có : AH2 = a2 + (b – 2)2 và khoảng cách từ H đến trục hoành là |b|, suy ra: a2 + (b – 2)2 = b2.

Do H thuộc đường tròn đường kính OA, nên: a2 + (b – 1)2 = 1.

Từ đó, ta có: left{begin{matrix}a^{2}-4b+4=0\a^{2}+b^{2}-2b=0end{matrix}right.

Suy ra : H(2sqrt{sqrt{5}-2}; √5 – 1) hoặc H(- 2sqrt{sqrt{5}-2}; √5 – 1).

Vậy phương trình đường thẳng ∆ là (√5 – 1).x – 2sqrt{sqrt{5}-2} y = 0 hoặc (√5 – 1)x + 2sqrt{sqrt{5}-2}y = 0.

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.