Skip to main content

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đều S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Gọi M là trung điểm của AC và N là trực tâm tam giác SAB. Tính độ dài đoạn MN.

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đều S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Gọi M là trung điểm của AC và N là trực tâm tam giác SAB. Tính độ dài đoạn MN.


A.
MN=\frac{1}{\sqrt{3}}
B.
MN=\frac{\sqrt{2}}{3}
C.
MN=\frac{\sqrt{3}}{4}
D.
MN=\frac{\sqrt{3}}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm của AB, thì N ∈ SH.

Do AB ⊥ (SHM) nên AB ⊥ MN.

Mặt khác AM ⊥ (SBD) => AM ⊥ SB.

Do N là trực tâm ∆SAB nên ta có AN ⊥ SB => SB ⊥ MN.

Do đó MN ⊥ (SAB) hay MN ⊥ SH. Vậy MN là khoảng cách từ M đến mặt bên SAB hay MN là đường cao trong tam giác vuông SMH.

=>\frac{1}{MN^{2}}=\frac{1}{MH^{2}}+\frac{1}{MS^{2}}  (*)

Ta có:

 \overrightarrow{MS}(1;1;1)=>MS=\sqrt{3}

         \overrightarrow{AC}(2; -2; 0) => AC = √8 => AM = √2 => MH = 1.

Vậy từ (*) => MN=\frac{\sqrt{3}}{2}

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.