Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho: (P): x - 2y + 2z + 1 = 0 cắt mặt cầu (S): (x - 2)2 + (y + 3)2 + (z + 3)2 = 5 theo giao tuyến là đường tròn (C). Viết phương trình mặt cầu (S’) có tâm thuộc (α): x + y + z + 3 = 0 và chứa đường tròn (C) nói trên

Trong không gian với hệ tọa độ Oxyz, cho: (P): x - 2y + 2z + 1 = 0 cắt m

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho: (P): x - 2y + 2z + 1 = 0 cắt mặt cầu (S): (x - 2)2 + (y + 3)2 + (z + 3)2 = 5 theo giao tuyến là đường tròn (C). Viết phương trình mặt cầu (S’) có tâm thuộc (α): x + y + z + 3 = 0 và chứa đường tròn (C) nói trên


A.
(S’): (x + 3)2 + (y13)2 + (z + 1)2 = 25
B.
(S’): (x - 3)2 + (y + 5)2 + (z + 1)2 = 20
C.
(S’): (x - 4)2 + (y + 3)2 + (z - 3)2 = 5
D.
(S’): (x - 7)2 + (y - 1)2 + (z + 3)2 = 16
Đáp án đúng: B

Lời giải của Luyện Tập 365

Mặt cầu (S) có tâm I(2;-3;-3), bán kính R = √5 .

Gọi d là đường thẳng đi qua I và vuông góc với (P).

Khi đó d: \frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+3}{2}.

Gọi I' là tâm của mặt cầu (S'). Ta có I' ∈ d => I'(2+t;-3-2t;-3+2t)

Ta có:

I'∈ (α) => 2 + t - 3 - 2t - 3 + 2t + 3 = 0 => t = 1 => I'(3;-5;-1).

Giả sử đường tròn (C) có tâm J và bán kính r.

Khi đó J là hình chiếu của I lên (P) và r = \sqrt{R^{2}-d^{2}(I,(P))}.

Từ đó suy ra J(\frac{5}{3};\frac{-7}{3};\frac{-11}{3}), r = 2.

khi đó bán kính của mặt cầu (S') là R' = \sqrt{I'J^{2}+r^{2}} = √20.

Vậy (S'): (x - 3)2 + (y + 5)2 + (z + 1)2 = 20.

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.