Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 7 = 0 và các điểm A(2; 0; 0), B(0; -3; 0), C(0; 0; 1). Tìm M ∈ (P) sao cho |\overrightarrow{MA} - 2\overrightarrow{MB} + 3\overrightarrow{MC}| đạt giá trị nhỏ nhất.

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 7 = 0 và các điểm A(2;

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 7 = 0 và các điểm A(2; 0; 0), B(0; -3; 0), C(0; 0; 1).

Tìm M ∈ (P) sao cho |\overrightarrow{MA} - 2\overrightarrow{MB} + 3\overrightarrow{MC}| đạt giá trị nhỏ nhất.


A.
M(\frac{3}{4}\frac{5}{2}\frac{5}{4})
B.
M(\frac{3}{4}\frac{5}{2}; - \frac{5}{4})
C.
M(\frac{3}{4}; - \frac{5}{2}\frac{5}{4})
D.
M(- \frac{3}{4}\frac{5}{2}\frac{5}{4})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi I là điểm sao cho: \overrightarrow{IA} - 2\overrightarrow{IB} + 3\overrightarrow{IC} = \vec{0}

 

Suy ra: \left\{\begin{matrix} x_I = \frac{x_A - 2x_B + 3x_C}{2} & = 1 \\ y_I = \frac{y_A - 2y_B + 3y_C}{2} & = 3\\ z_I = \frac{z_A - 2z_B + 3z_C}{2} & = \frac{3}{2} \end{matrix}\right.

=> I(1; 3; \frac{3}{2})

Khi đó |\overrightarrow{MA} - 2\overrightarrow{MB} + 3\overrightarrow{MC}| = 2|\vec{MI}| đạt GTNN khi và chỉ khi M là hình chiếu của I lên (P)

Mặt phẳng (P) có VTPT \vec{n} = (1; 2; 1)

Ta có \vec{IM} = t\vec{n} => \left\{\begin{matrix} x_M = 1 + t & \\ y_M = 3 + 2t & \\ z_M = \frac{3}{2} + t & \end{matrix}\right.

M ∈ (P) => 1 + t + 6 + 4t + \frac{3}{2} + t – 7 = 0

=> t = - \frac{1}4{}

=> M(\frac{3}{4}\frac{5}{2}\frac{5}{4})

 

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.