Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 3y + z – 11 = 0 và mặt cầu (S ): x2 + y2 + z2 – 2x + 4y – 2z – 8  = 0 . Chứng minh (P) tiếp xúc với (S). Tìm tọa độ tiếp điểm của (P) và (S).

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 3y + z – 11

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 3y + z – 11 = 0 và mặt cầu (S ): x2 + y2 + z2 – 2x + 4y – 2z – 8  = 0 . Chứng minh (P) tiếp xúc với (S). Tìm tọa độ tiếp điểm của (P) và (S).


A.
M(3;-1;2).
B.
M(-3;1;2).
C.
M(3;1;-2).
D.
M(3;1;2).
Đáp án đúng: D

Lời giải của Luyện Tập 365

(S) có tâm I(1;-2;1) và bán kính R = \sqrt{14}

d(I; (P)) = \frac{|2.1+3(-2)+1.1-11|}{\sqrt{2^{2}+3^{2}+1^{2}}}\frac{14}{\sqrt{14}} = R. Do đó (P) tiếp xúc với (S).

Gọi M là tiếp điểm của (P) và (S). Suy ra M thuộc đường thẳng qua I và vuông góc với (P).

Do đó M(1 + 2t; -2 + 3t; 1 + t).

Do M thuộc (P) nên 2(1 + 2t) + 3(-2 + 3t) + (1 + t) – 11 = 0 ⇔t = 1. Vậy M(3;1;2).

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}