Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; 3;2) và mặt phẳng (P) : 2x – 5y + 4z – 36 = 0. Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Viết phương trình mặt cầu tâm I và đi qua điểm A.

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; 3;2) và mặt phẳng (P

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1; 3;2) và mặt phẳng (P) : 2x – 5y + 4z – 36 = 0. Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Viết phương trình mặt cầu tâm I và đi qua điểm A.


A.
Phương trình mặt cầu tâm I và đi qua điểm A là (x – 1)2 + (y + 2)2 + (z – 6)2 = 45.  
B.
Phương trình mặt cầu tâm I và đi qua điểm A là (x + 1)2 + (y -  2)2 + (z + 6)2 = 45.  
C.
Phương trình mặt cầu tâm I và đi qua điểm A là (x – 1)2 + (y - 2)2 + (z – 6)2 = 45.  
D.
Phương trình mặt cầu tâm I và đi qua điểm A là (x + 1)2 + (y + 2)2 + (z – 6)2 = 45.  
Đáp án đúng: A

Lời giải của Luyện Tập 365

Do IA ⊥(P) nên I(-1 + 2t; 3 – 5t; 2 + 4t).

Do I ∈(P) nên 2(-1 + 2t) – 5(3 – 5t) + 4(2 + 4t) – 36 = 0, suy ra t = 1. Do đó I(1; -2; 6).

Ta có IA = 3√5.

Phương trình mặt cầu tâm I và đi qua điểm A là (x – 1)2 + (y + 2)2 + (z – 6)2 = 45.

 

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}