Skip to main content

Trong không gian Oxyz, cho đường thẳng ∆: \frac{x+1}{2} = \frac{y}{3} =  \frac{z+1}{-1}và hai điểm A(1; 2; -1), B(3; -1; -5). Viết phương trình đường thẳng d đi qua điểm A và cắt ∆ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất.

Trong không gian Oxyz, cho đường thẳng ∆:  =  =  và hai điểm A(1;

Câu hỏi

Nhận biết

Trong không gian Oxyz, cho đường thẳng ∆: \frac{x+1}{2} = \frac{y}{3} =  \frac{z+1}{-1}và hai điểm A(1; 2; -1), B(3; -1; -5). Viết phương trình đường thẳng d đi qua điểm A và cắt ∆ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất.


A.
d: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{-1}
B.
d: \frac{x+1}{1} = \frac{y-2}{2} =  \frac{z+1}{1}
C.
d: \frac{x-1}{1} = \frac{y-2}{4} = \frac{z+1}{-1}
D.
d: \frac{x+1}{-1}\frac{y-2}{2} = \frac{z+1}{1}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi d là đường thẳng đi qua A và cắt ∆ tại M => M(-1 + 2t; 3t; - 1 - t) 

\overrightarrow{AM} = (-2 + 2t; 3t - 2; -t);\overrightarrow{AB} = (2; -3; -4)

Gọi H là hình chiếu của B trên d. Khi đó d(B, d) = BH ≤ BA .

Vậy d(B, d) lớn nhất bằng BA ⇔ H ≡ A .

Điều này xảy ra 

⇔ AM ⊥ AB ⇔ \overrightarrow{AM}.\overrightarrow{AB} = 0 ⇔ 2(-2 + 2t) - 3(3t - 2) + 4 = 0⇔ t = 2

=> M(3; 6; -3). Phương trình đường thẳng d là  \frac{x-1}{1} =  \frac{y-2}{2} = \frac{z+1}{-1}

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1