Skip to main content

Trong không gian hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-2}{1} = \frac{y+1}{-2} = \frac{z}{-1} và mặt phẳng (P): x + y + z - 3 = 0. Gọi I là giao điểm của ∆ và (P). Tìm tọa độ điểm M thuộc (P) sao cho MI vuông góc với ∆ và MI = 4\sqrt{14}

Trong không gian hệ tọa độ Oxyz, cho đường thẳng∆:

Câu hỏi

Nhận biết

Trong không gian hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-2}{1} = \frac{y+1}{-2} = \frac{z}{-1} và mặt phẳng (P): x + y + z - 3 = 0. Gọi I là giao điểm của ∆ và (P). Tìm tọa độ điểm M thuộc (P) sao cho MI vuông góc với ∆ và MI = 4\sqrt{14}


A.
M(-3 ; -7 ; 13) hoặc M(5 ; 9 ; -11)
B.
M(-3 ; 7 ; 13) hoặc M(5 ; 9 ; -11)
C.
M(-3 ; -7 ; 13) hoặc M(-5 ; 9 ; -11)
D.
M(-3 ; -7 ; 13) hoặc M(5 ; -9 ; -11)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có ∆ cắt (P) tại I(1 ; 1 ; 1); điểm M ∈ (P) ⇒ M(x ; y ; 3 - x - y)

⇒ \small \overrightarrow{MI} = (1 - x ; 1 - y ; -2 + x + y). Vecto chỉ phương của ∆ là \small \overrightarrow{a} = (1 ; -2 ; -1)

Ta có: \small \left\{\begin{matrix} \overrightarrow{MI}.\overrightarrow{a}=0\\ MI^{2}=16.14 \end{matrix}\right. ⇔ \small \left\{\begin{matrix} y=2x-1\\ (1-x)^{2}+(1-y)^{2}+(-2+x+y)^{2}=16.14 \end{matrix}\right. ⇔ \small \begin{bmatrix} x=-3\\ x=5 \end{bmatrix}

Với x = -3 thì y = -7. Điểm M(-3 ; -7 ; 13)

Với x = 5 thì y = 9. Điểm M(5 ; 9 ; -11)

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .