Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} \sqrt{7x+y}-\sqrt{2x+y}=4\\2\sqrt{2x+y}-\sqrt{5x+8}=2 \end{matrix}\right.

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} \sqrt{7x+y}-\sqrt{2x+y}=4\\2\sqrt{2x+y}-\sqrt{5x+8}=2 \end{matrix}\right.


A.
(x,y)=(\frac{56}5{};\frac{13}{5})
B.
(x,y)=(\frac{56}5{};5)
C.
(x,y)=(1;3)
D.
(x,y)=(\frac{6}5{};\frac{3}{5})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Điều kiện: \left\{\begin{matrix} 7x+y\geq 0 \\2x+y\geq 0 \\5x+8\geq 0 \end{matrix}\right.

Ta có \sqrt{7x+y} - \sqrt{2x+y}=4 <=> \sqrt{7x+y}=\sqrt{2x+y}+4

<=> 7x+y=2x+y+16+8\sqrt{2x+y} <=> 5x-16=8\sqrt{2x+y}

<=> \sqrt{2x+y}=\frac{5x-16}{8}

Thay vào pt thứ 2 ta được:

\frac{5x-16}{8}-\sqrt{5x+8}=2 <=> (5x+8)-4\sqrt{5x+8}-32=0 <=> \sqrt{5x+8}=8

<=> x=\frac{56}5{}

Khi đó \sqrt{\frac{112}{5}+y}=\frac{56-16}{8} <=> y=\frac{13}{5} (các giá trị vừa tìm được của x,y đều thỏa mãn điều kiện)

Vậy hệ phương trình có nghiệm (x,y)=(\frac{56}5{};\frac{13}{5})

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?