Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} y^{2}-(x^{2}+2)y+2x^{2}=0 & \\ \sqrt{x+4}+ \sqrt{x-4}-2\sqrt{y-16}=2x-12& \end{matrix}\right.

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} y^{2}-(x^{2}+2)y+2x^{2}=0 & \\ \sqrt{x+4}+ \sqrt{x-4}-2\sqrt{y-16}=2x-12& \end{matrix}\right.


A.
(x;y)=(5;15)
B.
(x;y)=(25;5)
C.
(x;y)=(5;25)
D.
(x;y)=(5;5)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Điều kiện: x ≥ 4, y ≥16

- Giải phương trình (2) theo ẩn y ta được y=2(L), y=x2

Thay vào (1) ta được: \sqrt{x+4}+ \sqrt{x-4}-2\sqrt{x^{2}-16}=2x-12

                               \Leftrightarrow (\sqrt{x+4}+ \sqrt{x-4})^{2}-(\sqrt{x+4}+ \sqrt{x-4})-12=0

\Leftrightarrow \sqrt{x+4}+ \sqrt{x-4}=4

Giải hệ phương trình ta được x=5

 

Vậy hệ đã cho có nghiệm (5, 25) 

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.