Skip to main content

Cho x, y, z thảo mãn x2 + y2 ≤ xz + yz - 2xy Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4)( \frac{1}{4x^{4}}+ \frac{1}{4y^{4}}+ \frac{1}{4z^{4}} \right)

Cho x, y, z thảo mãn x2 + y2 ≤ xz + yz - 2xy
Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4

Câu hỏi

Nhận biết

Cho x, y, z thảo mãn x+ y2 ≤ xz + yz - 2xy

Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4)( \frac{1}{4x^{4}}+ \frac{1}{4y^{4}}+ \frac{1}{4z^{4}} \right)


A.
\frac{81}{5}
B.
\frac{81}{8}
C.
\frac{83}{8}
D.
\frac{81}{7}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Áp dụng bất đẳng thức Cô-si cho 2 số dương và bất đẳng thức: 

a2 + b2  ≥ \frac{(a+b)^{2}}{2}

Ta có: P\geq \left ( \frac{(x^{2}+y^{2})^{2}}{2} +z^{4}\right )\left ( \frac{1}{2x^{2}y^{2}}+\frac{1}{z^{4}} \right )\geq \left ( \frac{(x+y)^{4}}{8}+z^{4}\right )\left ( \frac{8}{(x+y)^{4}}+\frac{1}{z^{4}} \right )

Đặt t = \frac{(x+y)^{4}}{z^{4}} => 0 < t ≤ 1

. Khi đó ta có: P\geq \left ( \frac{t}{8}+1 \right )\left ( \frac{8}{t}+1 \right )=2+\frac{t}{8}+\frac{8}{t}

Xét hàm số: f(t)=2+\frac{t}{8}+\frac{8}{t}\Rightarrow f'(t)=\frac{1}{8}-\frac{8}{t^{2}}<0, \forall t\in (0;1]

Ta có f(x) nghịch biến trên (0;1] \Rightarrow \min_{t\in (0;1]}P=f(1)=\frac{81}{8}

Khi đó x=y=\frac{z}{2}

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.