Skip to main content

Cho x, y, z là các số thực dương thỏa mãn: 2x + 4y + 7z = 2xyz. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z. 

Cho x, y, z là các số thực dương thỏa mãn: 2x + 4y + 7z = 2xyz. Tìm giá trị nhỏ nhất của

Câu hỏi

Nhận biết

Cho x, y, z là các số thực dương thỏa mãn: 2x + 4y + 7z = 2xyz. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z. 


A.
minf(x;y) =  -4
B.
minf(x;y) = - \frac{15}{2}
C.
minf(x;y) =  \frac{15}{2}
D.
minf(x;y) =  4
Đáp án đúng: C

Lời giải của Luyện Tập 365

Từ giả thiết ta có: z = \frac{2x+4y}{2xy - 7}

Ta đưa bài toán về tìm min của f(x,y) = x+y+\frac{2x+4y}{2xy - 7}, với x, y >0, 2x - 7 >0

Cố dịnh x, coi f(x,y) là hàm số theo biến y ta có:

f'(x,y) = 1 - \frac{4x^{2}+28}{(2xy-7)^{2}}, f'(x;y) = 0 <=> y0\frac{\sqrt{4x^{2}+28}+7}{2x}

Xét dấu f'(x,y) ta được y0 = \frac{\sqrt{4x^{2}+28}+7}{2x} là điểm cực tiểu

Do đó f(x,y) ≥ f(x, y0) = x+ \frac{\sqrt{4x^{2}+28}}{x}+\frac{11}{2x} = g(x)

Ta có: g'(x) = 1 - \frac{14}{x^{2}\sqrt{x^{2}+7}}-\frac{11}{2x^{2}}, g'(x) = 0 <=> x= 3

Xét dấu g'(x) ta được x=3 là diểm cực tiểu

Vậy minf(x;y) = g(3) = \frac{15}{2}

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.