Cho tam giác ABC với A(1;1;1); B(-1;0;2). C thuộc trục Ox. Tìm tọa độ điểm C sao cho tam giác ABC có diện tích nhỏ nhất
Câu hỏi
Nhận biết
Cho tam giác ABC với A(1;1;1); B(-1;0;2). C thuộc trục Ox. Tìm tọa độ điểm C sao cho tam giác ABC có diện tích nhỏ nhất
A.
C(1;0;0)
B.
C(2;0;0)
C.
C(3;0;0)
D.
C(4;0;0)
Đáp án đúng: A
Lời giải của Luyện Tập 365
Ta có C thuộc Ox => C (x,0,0)
=>
=>
=> nhỏ nhất <=> nhỏ nhất
<=> x = -
=> C(1;0;0)
Câu hỏi liên quan
Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).
Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?
Cho hàm số y = a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: == Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.