Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA=a√3, SA vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích khối tứ diện SACD và tính cosin của góc giữa hai đường thẳng SB,AC.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA=a√3, SA vuông góc vớ

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA=a√3, SA vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích khối tứ diện SACD và tính cosin của góc giữa hai đường thẳng SB,AC.


A.
V=frac{sqrt{3}a^{3}}{6}, cos(SB,AC)=frac{sqrt{2}}{4}
B.
V=frac{sqrt{3}a^{3}}{6}, cos(SB,AC)= -frac{sqrt{2}}{4}
C.
V=frac{sqrt{3}a^{3}}{2}, cos(SB,AC)=frac{sqrt{2}}{2}
D.
V=frac{sqrt{3}a^{3}}{2}, cos(SB,AC)=frac{1}{2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

+ Tính VSACD

Có S∆ACD =frac{1}{2}DA.DC=frac{1}{2}a2

h=SA=a√3 (Vì SA vuông góc với đáy)

=> V=frac{1}{3}.SA.S∆ACD=frac{1}{3}a√3.frac{1}{2}a2=frac{sqrt{3}a^{3}}{6} (đvtt)

+ Tính cosin góc giữa SB và AC

-Từ O (giao 2 đường chéo AC và BD) kẻ OM//SB

=> Góc giữa hai đường thẳng SB và AC bằng góc giữa hai đường thẳng OM và AC

-Xét tam giác COM

Có OM=frac{1}{2}SB=frac{1}{2}sqrt{SA^{2}+AB^{2}}

=frac{1}{2}sqrt{(asqrt{3})^{2}+a^{2}}=a (Vì OM là đường trung bình của tam giác SBD)

OC=frac{1}{2}AC=frac{asqrt{2}}{2}

Có CD⊥AD, CD⊥SA => CD⊥(SAD) => CD⊥SD

=> Tam giác COM vuông tại D

Có MD=frac{1}{2}SD=frac{1}{2}sqrt{SA^{2}+AD^{2}}=frac{1}{2}sqrt{(asqrt{3})^{2}+a^{2}}=a

=> CM=sqrt{DC^{2}+DM^{2}}=sqrt{a^{2}+a^{2}}=a√2

=> Cos(widehat{COM})=frac{OM^{2}+OC^{2}-CM^{2}}{2OM.OC}

=frac{a^{2}+(frac{asqrt{2}}{2})^{2}-(asqrt{2})^{2}}{2a.frac{asqrt{2}}{2}} = -frac{sqrt{2}}{4}

=> cos(widehat{SB,AC})=frac{sqrt{2}}{4}

VSACD

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).