Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD), SA = a. Trên các cạnh AD, CD lần lượt lấy các điểm M, E sao cho AM = CE = a/4. Gọi N là trung điểm BM, K là giao điểm của AN và BC. Tính \dpi{100} V_{SADK}  và chứng minh (SKD) ⊥ (SAE)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD), SA = a. Trên các cạnh

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD), SA = a. Trên các cạnh AD, CD lần lượt lấy các điểm M, E sao cho AM = CE = a/4. Gọi N là trung điểm BM, K là giao điểm của AN và BC. Tính \dpi{100} V_{SADK}  và chứng minh (SKD) ⊥ (SAE)


A.
\dpi{100} V_{SADK}=\frac{a^{3}}{2}
B.
\dpi{100} V_{SADK}=\frac{a^{3}}{9}
C.
\dpi{100} V_{SADK}=\frac{a^{3}}{3}
D.
\dpi{100} V_{SADK}=\frac{a^{3}}{6}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Có SA ⊥ (ADK) => h = SA = a

Có AMKB là hình chữ nhật

=> AM = BK = a/4

=> CK = BC - BK = 3a/4

=> \dpi{100} S_{ADK}=S_{hv}-(S_{ABK}+S_{DCK})= \frac{a^{2}}{2}

=> \dpi{100} V_{SADK}=\frac{a^{3}}{6}

Chứng minh KD ⊥ (SAE)

Có: KD ⊥ SA (vì SA⊥(ABCD))

Ta đi chứng minh: KD ⊥ AE <=> cm góc DIE = 1 VUÔNG

Có : \dpi{100} \widehat{D_{1}}\widehat{+K_{1}}= 90^{0}

tan \dpi{100} \widehat{K_{1}}=\frac{CD}{CK}=\frac{4}{3}

tan \dpi{100} \widehat{E_{1}}=\frac{AD}{DE}=\frac{4}{3}

=> \dpi{100} \widehat{K_{1}}=\widehat{E_{1}}

=> \dpi{100} \widehat{D_{1}}+\widehat{E_{1}}=90^{0}

=> góc DIE = 1 VUÔNG

=> KD  ⊥ AE

=> KD  ⊥(SAE)

=> (SKD)  ⊥ (SAE) 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.