Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, hai đường chéo AC = 2√3a , BD = 2a và cắt nhau tại O, hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng \frac{a\sqrt{3}}{4} , tính thể tích khối chóp S.ABCD theo a, và góc giữa 2 mặt phẳng (SAB) với (SBD). 

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, hai đường chéo AC = 2√3a , BD = 2a và cắt

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, hai đường chéo AC = 2√3a , BD = 2a và cắt nhau tại O, hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng \frac{a\sqrt{3}}{4} , tính thể tích khối chóp S.ABCD theo a, và góc giữa 2 mặt phẳng (SAB) với (SBD). 


A.
  VS.ABCD\frac{\sqrt{5}a^3}{3}\widehat{(SAB);(SBD)} = arccos\frac{1}{4}
B.
VS.ABCD = \frac{\sqrt{3}a^3}{3}\widehat{(SAB);(SBD)} = arccos\frac{1}{8}
C.
VS.ABCD = \frac{\sqrt{3}a^3}{3}\widehat{(SAB);(SBD)} = arccos2
D.
VS.ABCD = \frac{\sqrt{3}a^3}{3}\widehat{(SAB);(SBD)} = arccos\frac{1}{4}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Từ giả thiết AC = 2a√3; BD = 2a và AC, BD vuông góc với nhau tại trung điểm O của mỗi đường chéo. Ta có ∆ABO vuông tại O và AO = a√3; BO = a. Gọi K là hình chiếu của O trên AB, gọi I là hình chiếu của O trên SK.

Từ giả thiết 2 mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD) nên giao tuyến của chúng là SO ⊥ (ABCD)

Ta chứng minh được khoảng cách O tới (SAB) là đoạn OI

Ta có trong tam giác vuông AOB ta có: 

\frac{1}{OK^{2}} = \frac{1}{OA^{2}} + \frac{1}{OD^{2}} = \frac{1}{a^{2}} + \frac{1}{3a^{2}} => OK = \frac{a\sqrt{3}}{2}

Tam giác SOK vuông tại O, OI là đường cao 

=> \frac{1}{OI^{2}} = \frac{1}{OK^{2}} + \frac{1}{SO^{^{2}}} => SO = \frac{a}{2}.

Diện tích đáy SABCD = 4S∆ABO = 2.OA.OB = 2√3a2

Đường cao của hình chóp SO = \frac{a}{2}

Thể tích khối chóp S.ABCD: VS.ABCD = \frac{1}{3}SABCD.SO = \frac{\sqrt{3}a^{3}}{3}

Ta có hình chiếu của tam giác SAB trên mặt phẳng (SBD) là ∆SBO

Gọi α là góc giữa 2 mặt phẳng (SAB) và (SBD) ta có cosα =  \frac{S_{SBO}}{S_{SAB}}

Ta có SSBO = \frac{1}{2}OB.SO = \frac{a^e_2}{4}, SK = a => SSAB = a

=> cosα = \frac{1}{4} => α = arccos\frac{1}{4} 

 

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}