Skip to main content

Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết \widehat{BAC}= 1200, tính thể tích của khối chóp S.ABC theo a. 

Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA v

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết \widehat{BAC}= 1200, tính thể tích của khối chóp S.ABC theo a. 


A.
VS.ABC  = \frac{a^{3}\sqrt{2}}{4}.
B.
VS.ABC  = \frac{a^{3}\sqrt{2}}{32}.
C.
VS.ABC  = \frac{a^{3}\sqrt{2}}{16}.
D.
VS.ABC  = \frac{a^{3}\sqrt{2}}{36}.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Vì  SA ⊥ mp(ABC) nên SA ⊥ AB  và  SA ⊥ AC. Xét hai tam giác vuông SAB và SAC, ta có SA chung và SB = SC  ⇒ ΔSAB = ΔSAC  ⇒ AB = AC 

Áp dụng định lí côsin cho tam giác cân BAC, ta được a2 = AB2 +  AC2 - 2AB.AC.cos\widehat{BAC} = 2AB2(1 – cos1200) = 3AB2

Suy ra  AB = \frac{a\sqrt{3}}{3}.

Do đó  SA = \sqrt{SB^{2}-AB^{2}}\frac{a\sqrt{6}}{3}

và   SABC  =  \frac{1}{2}AB2.sin\widehat{BAC}\frac{a^{2}\sqrt{3}}{12}

Vì vậy VS.ABC  =  \frac{1}{3}SABC.SA  = \frac{a^{3}\sqrt{2}}{36}.

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.