Skip to main content

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60o. 1. Tính thể tích khối chóp S.ABC. 2. Trong tam giác SAC vẽ phân giác góc A cắt cạnh SC tại D. Tính khoảng cách giữa hai đường thẳng AC và BD.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Có SA = AB = a√3 , cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60o.

1. Tính thể tích khối chóp S.ABC.

2. Trong tam giác SAC vẽ phân giác góc A cắt cạnh SC tại D. Tính khoảng cách giữa hai đường thẳng AC và BD.


A.
VS.ABC = \frac{a^{3}}{2} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{2}}{5-2\sqrt{2}}}
B.
VS.ABC = \frac{2a^{3}}{3} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
C.
VS.ABC = \frac{a^{3}}{3} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
D.
  VS.ABC = \frac{a^{3}}{2} ; d(AC, BD) = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}
Đáp án đúng: D

Lời giải của Luyện Tập 365

1. SA = AB = a√3; góc SCA = 60o  

=> AC = a

SABC\frac{1}{2}a.a√3 = \frac{a^{2}\sqrt{3}}{2}

VS.ABC\frac{1}{3}.\frac{a^{2}\sqrt{3}}{2}.a√3 = \frac{a^{3}}{2}

2. Kẻ DH //AC (H ε SA)

Kẻ AK ⊥ BH (K ε BH)

Suy ra AC // (BDH)

D(AC, BD) = d(A, (BDH)) = AK

Ta có: \frac{HA}{HS}=\frac{DC}{DS}=\frac{AC}{AS}. Tính được HA = \frac{a(3-\sqrt{3})}{2}

\frac{1}{AH^{2}}+\frac{1}{AB^{2}}=\frac{1}{AK^{2}}\Rightarrow \frac{4}{a^{2}(3-\sqrt{3})}+\frac{1}{3a^{2}}=\frac{1}{AK^{2}}

=> AK2\frac{3a^{2}(3-\sqrt{3})}{15-6\sqrt{3}}  <=> AK = a\sqrt{\frac{3-\sqrt{3}}{5-2\sqrt{3}}}

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.