Skip to main content

Cho 3 số thực x, y, z thỏa mãn log2x + log8y3 + log32z5 = 0 (*) Tìm giá trị nhỏ nhất của biếu thức:  F = \frac{\sqrt{1+x^{3}+y^{3}}}{xy} + \frac{\sqrt{1+y^{3}+z^{3}}}{yz} + \frac{\sqrt{1+z^{3}+x^{3}}}{zx}

Cho 3 số thực x, y, z thỏa mãn log2x + log8y3 + log32z5 = 0 (*)
Tìm giá trị nhỏ nhất của

Câu hỏi

Nhận biết

Cho 3 số thực x, y, z thỏa mãn log2x + log8y3 + log32z5 = 0 (*)

Tìm giá trị nhỏ nhất của biếu thức: 

F = \frac{\sqrt{1+x^{3}+y^{3}}}{xy} + \frac{\sqrt{1+y^{3}+z^{3}}}{yz} + \frac{\sqrt{1+z^{3}+x^{3}}}{zx}


A.
2√3
B.
√3
C.
3√3
D.
3
Đáp án đúng: C

Lời giải của Luyện Tập 365

Từ điều kiện (*) ta có x, y, z > 0 và xyz = 1

Áp dụng bất đẳng thức giữa trung bình cộng và trung bình nhân cho 3 số dương ta có:

1 + x3 + y3 ≥ 3\sqrt[3]{1.x^{3}.y^{3}} = 3xy ⇔ \frac{\sqrt{1+x^{3}+y^{3}}}{xy} ≥ \frac{\sqrt{3}}{\sqrt{xy}} (1)

Tương tự: \frac{\sqrt{1+y^{3}+z^{3}}}{yz} ≥ \frac{\sqrt{3}}{\sqrt{yz}} (2)

\frac{\sqrt{1+z^{3}+x^{3}}}{zx} ≥ \frac{\sqrt{3}}{\sqrt{zx}} (3)

Cộng (1), (2), (3) về theo vế ta được:

F =  \frac{\sqrt{1+x^{3}+y^{3}}}{xy} + \frac{\sqrt{1+y^{3}+z^{3}}}{yz} + \frac{\sqrt{1+z^{3}+x^{3}}}{zx} ≥

√3(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}} +\frac{2}{\sqrt{zx}}) ≥ √3.3.\sqrt[3]{\frac{1}{\sqrt{x^{2}y^{2}z^{2}}}} = 3√3

Dấu "=" xảy ra khi x = y = z = 1

vậy giá trị nhỏ nhất của F là 3√3.

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.