Skip to main content

Cho 3 số dương thay đổi a, b, c thỏa mãn a2 + b2 + c2 = 3. Tìm giá trị nhỏ nhất của biểu thức A = (2 - a)(2 - b)(2 - c)

Cho 3 số dương thay đổi a, b, c thỏa mãn a2 + b2 +

Câu hỏi

Nhận biết

Cho 3 số dương thay đổi a, b, c thỏa mãn a+ b+ c= 3. Tìm giá trị nhỏ nhất của biểu thức A = (2 - a)(2 - b)(2 - c)


A.
min A = \frac{25}{27}
B.
min A = \frac{24}{27}
C.
min A = \frac{22}{27}
D.
min A = \frac{19}{27}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Không mất tính tổng quat giả sử c = Min{a; b; c} thì 0 ≤ c ≤ 1

Ta có: (2 - a)(2 - b) = 4 - 2(a + b) + \frac{(a+b)^{2}}{2}+\frac{c^{2}-3}{2}\geq \frac{c^{2}+1}{2}

Xét hàm số f(x) = (x+ 1)(2 - x)

f'(x) = -3x+ 4x - 1 , f'(x) = 0 <=> \left [ \begin{matrix} x=1\\ x=\frac{1}{3} \end{matrix}

Từ bảng biến thiên (học sinh tự lập) ta có:A ≥  \frac{1}{2}f(\frac{1}{3})  ≥ \frac{25}{27}

Khi a = \frac{5}{3}, b = \frac{1}{3}, c = \frac{1}{3} thì A = \frac{25}{27} . Vậy min A = \frac{25}{27}

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.