Skip to main content

Cho ∆ABC có tọa độ đỉnh A(2;1). Đường cao từ đỉnh B và trung tuyến từ đỉnh C có phương trình lần lượt là: (d1): 2x-y=0 ; (d2): x-y=0. Viết phương trình cạnh BC.

Cho ∆ABC có tọa độ đỉnh A(2;1). Đường cao từ đỉnh B và trung tuyến từ đỉnh C có phư

Câu hỏi

Nhận biết

Cho ∆ABC có tọa độ đỉnh A(2;1). Đường cao từ đỉnh B và trung tuyến từ đỉnh C có phương trình lần lượt là: (d1): 2x-y=0 ; (d2): x-y=0. Viết phương trình cạnh BC.


A.
2x-y+4=0
B.
2x+y-4=0
C.
x+2y-4=0
D.
-x+2y+4=0
Đáp án đúng: B

Lời giải của Luyện Tập 365

AC đi qua A(2;1) và vuông góc đường cao (d1) nên phương trình cạnh AC là: x+2y-4=0

Tọa độ C là nghiệm hệ: left{begin{matrix} x+2y-4=0\x=y end{matrix}right.<=> left{begin{matrix} x=frac{4}{3}\ y=frac{4}{3} end{matrix}right.

=> C(frac{4}{3};frac{4}{3})

Do B ∈ (d1) nên B(b;2b).

Trung điểm của AB là I(frac{b+2}{2};frac{2b+1}{2})

Do I thuộc (d2) nên: frac{b+2}{2}=frac{2b+1}{2}

<=>b=1 => B(1;2)

Phương trình cạnh BC là: 2x+y-4=0

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx