Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho (P):x-y+z-6=0 và hai đường thẳng   d1:\frac{x-2}{-1}=\frac{y-3}{1}=\frac{z-4}{1}; d2:\frac{x-1}{2}=\frac{y+2}{1}=\frac{z-2}{-2} Viết phương trình đường thẳng d biết d//(P) đồng thời d cắt hai đường thẳng d1,d2 lần lượt tại hai điểm A và B sao cho AB=3√6

Trong không gian với hệ tọa độ Oxyz, cho (P):x-y+z-6=0 và hai đường thẳn

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho (P):x-y+z-6=0 và hai đường thẳng   d1:\frac{x-2}{-1}=\frac{y-3}{1}=\frac{z-4}{1}; d2:\frac{x-1}{2}=\frac{y+2}{1}=\frac{z-2}{-2} Viết phương trình đường thẳng d biết d//(P) đồng thời d cắt hai đường thẳng d1,d2 lần lượt tại hai điểm A và B sao cho AB=3√6


A.
d: \frac{x-2}{1}=\frac{y-3}{-1}=\frac{z-4}{-2}
B.
d: \frac{x-2}{1}=\frac{y+3}{-1}=\frac{z-4}{-2}
C.
d: \frac{x-2}{1}=\frac{y+3}{1}=\frac{z-4}{-2}
D.
d: \frac{x+2}{1}=\frac{y-3}{-1}=\frac{z-4}{-2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Giả sử A(2-t1;3+t1;4+t1), B(1+2t2;-2+t2;2-2t2)

Mặt phẳng (P) có VTPT là \overrightarrow{n_{P}}=(1;-1;1)

Ta có : d//(P) ⇔ \overrightarrow{AB}.\overrightarrow{n_{P}}=0

                   ⇔ (-1+2t2+t1)-(-5+t2-t1)+(-2-2t2-t1)=0 ⇔ t2=t1+2

Từ đó suy ra \overrightarrow{AB}=(3t1+3;-3;-3t1-6)

Theo giả thiết:AB=3√6 ⇔ (3 t1+3)2+9+(3 t1+6)2=54 ⇔ \begin{bmatrix}t_{1}=-3\\t_{1}=0\end{bmatrix}

Với t1=-3 => A(5;0;1) ∈ (P) (loại)

Với t1=0 => A(2;3;4),\overrightarrow{AB}(3;-3;-6) => d: \frac{x-2}{1}=\frac{y-3}{-1}=\frac{z-4}{-2}

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.