Skip to main content

Trong mặt phẳng Oxy cho tam giác ABC có trọng tâm G(1;1), đường cao từ đỉnh A có phương trình 2x-y+1=0 và các đỉnh B,C thuộc đường thẳng ∆:x+2y-1=0. Tìm tọa độ các điểm A,B,C biết diện tích tam giác ABC bằng 6

Trong mặt phẳng Oxy cho tam giác ABC có trọng tâm G(1;1), đường cao từ đ

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho tam giác ABC có trọng tâm G(1;1), đường cao từ đỉnh A có phương trình 2x-y+1=0 và các đỉnh B,C thuộc đường thẳng ∆:x+2y-1=0. Tìm tọa độ các điểm A,B,C biết diện tích tam giác ABC bằng 6


A.
A(1;3),B(3;-1),C(-1;1) hoặc A(1;3),B(-1;1), C(3;-1)
B.
A(1;1),B(2;1),C(1;0)
C.
A(1;1),B(3;-1),C(0;1) hoặc A(1;3),B(-1;1), C(3;-1)
D.
A(1;3),B(3;-1),C(-1;1) 
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tọa độ chân đường cao H(-\frac{1}{5};\frac{3}{5}). Đường thẳng d đi qua G và song song với BC có PT d: x+2y-3=0. d ∩ AH=I => I(\frac{1}{5};\frac{7}{5})

Ta có \vec{HA}=3\vec{HI} => A(1;3)

d(A,BC)=\frac{6}{\sqrt{5}} => BC=\frac{2S_{ABC}}{d(A,BC)}=2\sqrt{5}

Gọi M là trung điểm BC. Khi đó \vec{MA}=3\vec{MG} => M(1;0)

Gọi B(x_{1}\frac{-x_{1}+1}{2}). Khi đó MB=\sqrt{5} <=> (x1-1)2=4 <=> \begin{bmatrix} x_{1}=3\\x_{1}=-1 \end{bmatrix}

+ Với x1=3 => B(3;-1) => C(-1;1)

+ x1=-1 => B(-1;1) => C(3;-1)

Suy ra A(1;3),B(3;-1),C(-1;1) hoặc A(1;3),B(-1;1), C(3;-1)

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.