Skip to main content

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC cân tại C có diện tích bằng \sqrt{6}. Biết A(1;-1;2), B(3;1;0). Tìm tọa độ điểm C biết C thuộc mặt phẳng (P):x-2y-4z+8=0

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC cân tại C có diện t

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC cân tại C có diện tích bằng \sqrt{6}. Biết A(1;-1;2), B(3;1;0). Tìm tọa độ điểm C biết C thuộc mặt phẳng
(P):x-2y-4z+8=0


A.
C(-1;-1;2)
B.
C(1;1;2)
C.
C(2;0;2)
D.
C(2;1;2)
Đáp án đúng: D

Lời giải của Luyện Tập 365

AB=\sqrt{2^{2}+2^{2}+(-2)^{2}}=2\sqrt{3}

Hạ CH ⊥AB suy ra CH=\frac{2S_{ABC}}{AB}=\sqrt{2}

CA=CB=\sqrt{CH^{2}+HA^{2}}=\sqrt{5}

Tọa độ C là nghiệm: \left\{\begin{matrix} (x-1)^{2}+(y+1)^{2}+(z-2)^{2}=5\\(x-3)^{2}+(y-1)^{2}+(z-0)^{2}=5 \\x-2y-4z+8=0 \end{matrix}\right.

Suy ra C(2;1;2)

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.