Skip to main content

Trong không gian tọa độ Oxyz cho hình lăng trụ đứng tam giác ABC.A’B’C’ với A(0;-3;0), B(4;0;0), C(0;3;0), B’(4;0;4). Gọi M là trung điểm của A’B’. Mặt phẳng (P) đi qua hai điểm A,M và song song với BC’, (P) cắt A’C’ tại N. Tính độ dài MN

Trong không gian tọa độ Oxyz cho hình lăng trụ đứng tam giác ABC.A’B’C’

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz cho hình lăng trụ đứng tam giác ABC.A’B’C’ với A(0;-3;0), B(4;0;0), C(0;3;0), B’(4;0;4). Gọi M là trung điểm của A’B’. Mặt phẳng (P) đi qua hai điểm A,M và song song với BC’, (P) cắt A’C’ tại N. Tính độ dài MN


A.
MN=\frac{\sqrt{3}}{2}
B.
MN=\frac{\sqrt{17}}{2}
C.
MN=\sqrt{17}
D.
MN=\frac{\sqrt{21}}{2}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có A’(0;-3;4), C’(0;3;4).  M là trung điểm của A’B’ nên M(2;-\frac{3}{2};4)

Mặt khác: \vec{AM}=(2;\frac{3}{2};4), \vec{BC}=(-4;4;4). (P) có VTPT \vec{n_{2}} cùng phương với vecto [\vec{AM},\vec{BC}']=(-6;24;12) => chọn \vec{n_{2}}=(1;4;-2)

=> (P): x+4y-2z+12=0. (AC') đi qua A và có VTCP \vec{u}=\frac{1}{6}\vec{AC}' =(0;1;0)

=> (AC): x=0; y=-3+t; z=4 (t∈R) thay vào PT của (P)

=> t=2 => N(0;-1;4) => MN=\frac{\sqrt{17}}{2}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).