Skip to main content

Giả sử z1 , z2 là hai nghiệm thực hoặc số phức (không nhất thiết phải khác nhau) của phương trình: z2 – 2z + m = 0 ; m ∈ R Tìm giá trị nhỏ nhất của |z1| + |z2|

Giả sử z1 , z2 là hai nghiệm thực hoặc số phức (kh

Câu hỏi

Nhận biết

Giả sử z1 , z2 là hai nghiệm thực hoặc số phức (không nhất thiết phải khác nhau) của phương trình: z2 – 2z + m = 0 ; m ∈ R Tìm giá trị nhỏ nhất của |z1| + |z2|


A.
min(|z1| + |z2|) = 2 khi m = 1
B.
min(|z1| + |z2|) = -2 khi m = 1
C.
min(|z1| + |z2|) = 2 khi m = -1
D.
min(|z1| + |z2|) = -2 khi m = -1
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có z2 – 2z + m = 0

⇒ ∆’ = 1 – m ; z1 + z2 = 2 ; z1z2 = m;

m  ≤ 1:

(|z1| + |z2|)2z_{1}^{2} + z_{2}^{2} + 2|z1z2| = (z1 + z2)2 – 2z1z2 + 2|z1z2|

4 – 2m + 2|m| ≥ 4 ⇒ |z1| + |z2| ≥ 2      (1)

m > 1:

z1 = 1 - \sqrt{m-1} .i ; z2 = 1 + \sqrt{m-1} .i

|z1| + |z2| = 2√m > 2                           (2)

Từ (1) và (2) suy ra: min(|z1| + |z2|) = 2 khi m = 1

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.