Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng d : x−3y −9 = 0. Từ điểm M thuộc d kẻ hai đường thẳng tiếp xúc với (C) lần lượt tại A và B. Tìm tọa độ điểm M sao cho độ dài AB nhỏ nhất. 

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):(x − 2)2 + (y −1)2 = 5 và đường thẳng d : x−3y −9 = 0. Từ điểm M thuộc d kẻ hai đường thẳng tiếp xúc với (C) lần lượt tại A và B. Tìm tọa độ điểm M sao cho độ dài AB nhỏ nhất. 


A.
M(3;-1)
B.
M(1;-2)
C.
M(3;2)
D.
M(3;-2)
Đáp án đúng: D

Lời giải của Luyện Tập 365

(C) có tâm I(2;1), bán kính  R= √5, d(I,d) = √10 > R nên d không cắt (C)

M ∊d => M(3m+9; m)

Từ tính chất tiếp tuyến đó ta có MI ⊥ AB ại H là trung điểm AB

Trong tam giác vuông AIM ta có \frac{1}{AH^{2}}=\frac{1}{AI^{2}}+\frac{1}{AM^{2}}

=>  AH2 = \frac{AI^{2}.AM^{2}}{AI^{2}+AM^{2}}=\frac{R^{2}(IM^{2}-R^{2})}{IM^{2}} =  R2  -  \frac{R^{4}}{IM^{2}}

Ta có AB nhỏ nhất AH nhỏ nhất ,=> IM nhỏ nhất ( R = √5 không đổi)

Mà  IM2 = (3m+7)2 + (m-1)2 = 10(m+2)2 + 10 ≥ 10 nên suy ra IMmin = √10 khi m = -2

suy ra M(3;-2)

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.