Skip to main content

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0. Tìm giá trị lớn nhất của biểu thức P = x2 + y2 + x+ y+8\sqrt{4-x-y}

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0.
Tìm giá trị lớn nhất

Câu hỏi

Nhận biết

Cho các số thực không âm x, y thỏa mãn x2 + y2 + (3x − 2)(y −1) = 0.

Tìm giá trị lớn nhất của biểu thức P = x2 + y2 + x+ y+8\sqrt{4-x-y}


A.
MaxP = 6+8√2
B.
MaxP = 6-8√2
C.
MaxP = 5+8√2
D.
MaxP = 5- 8√2
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có giả thiết x2 + y2 + (3x -2)(y-1) = 0 <= > (x+y)2 – 3(x+y) + 2 = -xy – y

Vì x, y không âm nên –xy – y ≤ 0. Suy ra (x+y)2 – 3(x+y) + 2 ≤ 0 <= > 1<x+y ≤2

Đặt t = x+y, khi đó t ∊ [1;2]

Ta có P = x2 + y2 + x +y + 8\sqrt{4-x-y} ≤ (x+y)2 + (x+y) + 8\sqrt{4-x-y} = t2 + t + 8\sqrt{4-t}

Xét hàm số f(t) = t2 + t + 8 với t ∊ [1;2]

Ta có f’(t) = 2t +1 -\frac{4}{\sqrt{4-t}} , với mọi t ∊ [1;2]

Chú ý rằng f’(t) > 3 -\frac{4}{\sqrt{2}} > 0  với mọi t ∊ (1;2)

Suy ra f(t) đồng biến trên [1;2]. Do đó maxf(t) = f(2) = 6+8√2

Suy ra P ≤ 6+8√2, dấu đẳng thức xảy ra khi \left\{\begin{matrix} xy=0\\ t=2 \end{matrix}\right.. <= > x=2, y=0

Vậy giá trị lớn nhất của P là 6+8√2, đạt khi x=2, y=0

 

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.