Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y+z−7 = 0 và hai điểm A(0;0;2),B(1;−1;0) . Viết phương trình mặt cầu (S) có tâm thuộc mặt phẳng Oxy, đi qua hai điểm A, B và tiếp xúc với (P).

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y+z−7 = 0 và hai điểm A(0;0;2),B(1;−1;0)

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y+z−7 = 0 và hai điểm A(0;0;2),B(1;−1;0) . Viết phương trình mặt cầu (S) có tâm thuộc mặt phẳng Oxy, đi qua hai điểm A, B và tiếp xúc với (P).


A.
(S): (x-1)2 + (y-2)2 + z2 =9
B.
(S): (x+2)2 + (y+1)2 + z2 =9
C.
(S): (x-3)2 + (y-2)2 + z2 =9
D.
cả A và B
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi T là mặt cầu (S), T ϵ Oxy <= > T(a;b;0)

Vì (S) đi qua hai điểm A(0;0;2), B(1;-1;0) nên TA = TB <=> a2 + b2 +4 = (a-1)2 + (b+1)2

<=> a-b+1 =0 <=>  a=b-1

(S) tiếp xúc với (P): 2x -2y +z-7=0 <=> d(T, (P)) = TA <=> \frac{\left | 2a-2b-7 \right |}{3}=\sqrt{a^{2}+b^{2}+4} (*)

Thay a= b-1 vào (*) ta được: (*) <=> \sqrt{(b-1)^{2}+b^{2}+4}=3\Leftrightarrow   b2 – b -2 =0 \Leftrightarrow \begin{bmatrix} b=-1\\ b=2 \end{matrix}

+) b=-1 thì a = -2 nên T(-2;-1;0) và R = 3 nên (S): (x+2)2 + (y+1)2 + z2 =9

+) b =2 thì a =1 nên T(1;2;0) và R = 3 nên (S): (x-1)2 + (y-2)2 + z2 =9

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.