Skip to main content

Cho các số dương x, y , z và x + y + z ≤ \frac{3}{2}. Tìm giá trị nhỏ nhất của biểu thức : P  = x + y + x + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.

Cho các số dương x, y , z và x + y + z ≤

Câu hỏi

Nhận biết

Cho các số dương x, y , z và x + y + z ≤ \frac{3}{2}. Tìm giá trị nhỏ nhất của biểu thức : P  = x + y + x + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.


A.
Pmin = - \frac{15}{2}
B.
Pmin\frac{15}{4}
C.
Pmin = \frac{15}{2}
D.
Pmin\frac{15}{6}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Trước hết dễ dàng chứng minh với mọi x; y ; z mà x, y, z > 0 ta luôn có :

( x + y + z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) ≥ 9 (*). Dấu “=” xảy ra khi : x = y = z.

(*) => ( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} ) ≥ \frac{9}{x+y+z}

=> P = x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} ≥ x + y + z + \frac{9}{x+y+z}

Đặt  x + y + z = t ( 0< t ≤ \frac{3}{2} ) , xét hàm số : F(t) = t + \frac{9}{t} ∈ ( 0; \frac{3}{2}]

F’(t) = 1 - \frac{9}{t^{2}} => F’(t) = 0 ⇔ t = ± 3; t = ±3  \notin ( 0; \frac{3}{2}]

F(\frac{3}{2}) = \frac{15}{2}.

Vậy Pmin = \frac{15}{2} khi \left\{\begin{matrix}x=y=z\\x+y+z=\frac{3}{2}\end{matrix}\right.

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx