Skip to main content

Trong không gian tọa độ Oxyz, cho 3 điểm A(0; 1; 3), B(3; 0; -2), C(0; 2; 5) và mặt phẳng (P): 3x - y - z + 11 = 0. Tìm tọa độ điểm M trên mặt phẳng (P) để (MA2 + MB2 + MC2) nhỏ nhất.

Trong không gian tọa độ Oxyz, cho 3 điểm A(0; 1; 3), B(3; 0; -2), C(0; 2; 5) và mặt phẳng

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz, cho 3 điểm A(0; 1; 3), B(3; 0; -2), C(0; 2; 5) và mặt phẳng (P): 3x - y - z + 11 = 0. Tìm tọa độ điểm M trên mặt phẳng (P) để (MA+ MB+ MC2) nhỏ nhất.


A.
M(2; 2; 3)
B.
M(-2; 2; 3)
C.
M(-2; -2; 3)
D.
M(-2; 2; -3)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Giả sử G là trọng tâm tam giác ABC, ta có: 

MA+ MB+ MC

(\overrightarrow{MG}+\overrightarrow{GA})^{2} + (\overrightarrow{MG}+\overrightarrow{GB})^{2} + (\overrightarrow{MG}+\overrightarrow{GC})^{2}

= 3MG2 + 2\overrightarrow{MG}(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}) + GA+ GB+ GC

= 3MG2 + GA+ GB+ GC2

Để(MA+ MB+ MC2) nhỏ nhất khi MG nhỏ nhất, khi đó M phải là hình chiếu của G lên mp(P)

Ta có G(1; 1; 2). Gọi d là đường thẳng qua G vuông góc với (P)

Phương trình d: \left\{\begin{matrix} x=1+3t & & \\ y=1-t & & \\ z=2-t & & \end{matrix}\right.

Tọa độ M là nghiệm của hệ: \left\{\begin{matrix} x=1+3t & & & \\ y=1-t & & & \\ z=2-t & & & \\ 3x-y-z+11=0 & & & \end{matrix}\right. ⇔ \left\{\begin{matrix} t=-1 & & & \\ x=-2 & & & \\ y=2 & & & \\ z=3 & & & \end{matrix}\right. 

=> M(-2; 2; 3)

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}