Tìm modun của số phức w = b + ci (b, c ∈ R), biết số phức là nghiệm của phương trình z2 + bz + c = 0
Câu hỏi
Nhận biết
Tìm modun của số phức w = b + ci (b, c ∈ R), biết số phức là nghiệm của phương trình z2 + bz + c = 0
A.
|w| = 2√37
B.
|w| = 3√37
C.
|w| = 3√34
D.
|w| = 2√34
Đáp án đúng: D
Lời giải của Luyện Tập 365
Ta có z0 = = -3 - i
Vì z0 là nghiệm của phương trình z2 + bz + c = 0 nên
(-3 - i)2 + b(-3 - i) + c = 0
=> w = 10 + 6i
Ta có |w| = = 2√34
Câu hỏi liên quan
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).
Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: == Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.
Cho hàm số y = a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.