Skip to main content

Trong không gian Oxyz, cho tứ diện ABCD với A(2; 1; 0), B(1; 1; 3), C(2;-1; 3), D(1;-1;-0). Viết phương trình mặt phẳng (P) song song với AB và CD sao cho khoảng cách từ đường thẳng AB và khoảng cách từ đường thẳng CD đến mặt phẳng (P) bằng nhau.

Trong không gian Oxyz, cho tứ diện ABCD với A(2; 1; 0), B(1; 1; 3), C(2;-1; 3), D(1;-1;-0).

Câu hỏi

Nhận biết

Trong không gian Oxyz, cho tứ diện ABCD với A(2; 1; 0), B(1; 1; 3), C(2;-1; 3), D(1;-1;-0). Viết phương trình mặt phẳng (P) song song với AB và CD sao cho khoảng cách từ đường thẳng AB và khoảng cách từ đường thẳng CD đến mặt phẳng (P) bằng nhau.


A.
y = 0
B.
y = 1
C.
y = 4
D.
y = 3
Đáp án đúng: A

Lời giải của Luyện Tập 365

Mặt phẳng (P) song song với AB và CD mà:

\overrightarrow{AB} = (-1; 0; 3), \overrightarrow{CD} = (-1; 0;-3)

nên có một véc tơ pháp tuyến là [\overrightarrow{AB},\overrightarrow{CD}] = (0;-6; 0)   => chọn 1 vtpt của (P) là (0;1;0)

Suy ra phương trình mp (P): y + D = 0

AB và CD song song (P) nên d(AB, (P)) = d(A, (P)) và d(CD, (P)) = d(C, (P))

d(AB, (P)) = d(CD, (P)) ⇔ d(A, (P)) = d(C, (P)) ⇔ |1 + D| = |-1 + D|

⇔ \left [ \begin{matrix} 1+D=-1+D & & \\ 1+D=1-D & & \end{matrix} ⇔ D = 0

Suy ra phương trình (P): y = 0

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .