Skip to main content

Cho Hypebol (H): \frac{x^{2}}{4}-\frac{y^{2}}{5} = 1 và đường thẳng ∆: x - y + m = 0 (m là tham số). Chứng minh đường thẳng ∆ luôn cắt (H) tại 2 điểm phân biệt thuộc hai nhánh của (H).

Cho Hypebol (H):  = 1 và đường thẳng ∆: x - y + m = 0 (m là tham số). Chứng minh đường

Câu hỏi

Nhận biết

Cho Hypebol (H): \frac{x^{2}}{4}-\frac{y^{2}}{5} = 1 và đường thẳng ∆: x - y + m = 0 (m là tham số). Chứng minh đường thẳng ∆ luôn cắt (H) tại 2 điểm phân biệt thuộc hai nhánh của (H).


A.
Xem phần lời giải
Đáp án đúng: D

Lời giải của Luyện Tập 365

Từ phương trình (H) có a = 2, b= √5 nên (H) có hai nhánh trái x ≤ -2 phải

x ≥ 2

Tọa độ giao điểm của (H) và đường thẳng đó là nghiệm của \left\{\begin{matrix} 5x^{2}-4y^{2}=20\\ x-y+m=0 \end{matrix}\right.

Suy ra 5x2 – 4(x + m)2 = 20

⇔ x2 – 8mx – 4m2 – 20 = 0 phương trình này luôn có 2 nghiệm khác dấu.

Vậy đường thẳng đã cho luôn cắt (H) tại 2 điểm thuộc hai nhánh.

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).