Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt  phẳng (P): 3x + 2y - z + 4 = 0 và điểm A(2; 2; 0). Tìm tọa độ điểm M sao cho MA vuông góc với (P), M cách đều gốc tọa độ O và mặt phẳng (P).

Trong không gian với hệ tọa độ Oxyz, cho mặt  phẳng (P): 3x + 2y - z + 4 = 0 và điểm A(2;

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt  phẳng (P): 3x + 2y - z + 4 = 0 và điểm A(2; 2; 0). Tìm tọa độ điểm M sao cho MA vuông góc với (P), M cách đều gốc tọa độ O và mặt phẳng (P).


A.
M(\frac{-1}{4};\frac{-1}{2};\frac{3}{4})
B.
M(\frac{-1}{4};\frac{1}{2};\frac{-3}{4})
C.
M(\frac{-1}{4};\frac{1}{2};\frac{3}{4})
D.
M(\frac{1}{4};\frac{1}{2};\frac{3}{4})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Mặt phẳng (P) có vec tơ pháp tuyến \overrightarrow{n} = (3; 2; -1)

Gọi M(a; b; c).Ta có \overrightarrow{AM}=(a - 2; b - 2; c)

Vì MA ⊥ (P) nên \overrightarrow{AM} và \overrightarrow{n} cùng phương ⇔ \overrightarrow{AM} = t.\overrightarrow{n}, t ∈ R 

 ⇔ \left\{\begin{matrix} a=2+3t\\ b=2+2t\\ c=-t \end{matrix}\right. (1)

Vì M cách đều O và (P) nên MO = d(M, (P)) 

⇔ \sqrt{a^{2}+b^{2}+c^{2}}=\frac{|3a+2b-c+4|}{\sqrt{14}.}

⇔14(a2 + b2 + c2) = (3a + 2b – c + 4)2 (2)

Thay (1) vào (2) tìm được t = \frac{-3}{4} . Vậy M(\frac{-1}{4};\frac{1}{2};\frac{3}{4})

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?