Skip to main content

Trong mặt phẳng với hệ trục tọa độ( Oxy) , cho hình chữ nhật ABCD . Hai điểm B,C thuộc trục tung. Phương trình đường chéo AC : 3x+ 4y−16 = 0 . Xác định tọa độ các đỉnh của hình chữ nhật đã cho biết rằng bán kính đường tròn nội tiếp tam giác ACD bằng 1.

Trong mặt phẳng với hệ trục tọa độ( Oxy) , cho hình chữ nhật ABCD . Hai điểm B,C&nb

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục tọa độ( Oxy) , cho hình chữ nhật ABCD . Hai điểm B,C thuộc trục tung. Phương trình đường chéo AC : 3x+ 4y−16 = 0 . Xác định tọa độ các đỉnh của hình chữ nhật đã cho biết rằng bán kính đường tròn nội tiếp tam giác ACD bằng 1.


A.
D(4;4)
B.
D(-4;4)
C.
D(4;-4)
D.
cả A và B
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có C là giao điểm của trục tung và đường thẳng AC nên C(0;4)

Vì bán kính đường tròn nội tiếp tam giác ACD bằng 1 nên bán kính đường tròn nội tiếp tam giác ABC cũng bằng 1.

Vì B nằm trên trục tung nên B(0;b). Đường thẳng AB đi qua B và vuông góc với

BC ≡Oy : x = 0 nên AB : y = b

Vì A là giao điểm của AB và AC nên A (\frac{16-4b}{3}; b)

Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Ta có:

S=\frac{2.S_{ABC}}{AB+BC+CA}=\frac{\left | b-4 \right |.\left | \frac{16-4b}{3} \right |}{\left | b-4 \right |+\left | \frac{16-4b}{3} \right |\sqrt{(b-4)^{2}+(\frac{16-4b}{3})^{2}}}=\frac{1}{3}\left | b-4 \right |

Theo giả thiết r=1 nên ta có: b=1 hoặc b=7

Với b=1 ta có A(4;1); B(0;1). Suy ra: D(4;4)

Với b=7 ta có A(-4;7), B(0;-7). Suy ra D(-4;4)

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.