Skip to main content

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:  \frac{x+2}{1} = \frac{y-3}{-2} = \frac{z-1}{-2}. Xét hình bình hành ABCD có A(1; 0; 0), C(2; 2; 2), D ∈ d. Tìm tọa độ đỉnh B biết diện tích của hình bình hành ABCD bằng 3√2.

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:  \frac{x+2}{1} = \frac{y-3}{-2} = \frac{z-1}{-2}. Xét hình bình hành ABCD có A(1; 0; 0), C(2; 2; 2), D ∈ d. Tìm tọa độ đỉnh B biết diện tích của hình bình hành ABCD bằng 3√2.


A.
B(3; 3; 5)
B.
B(-3; 3; 5)
C.
B(3; -3; 5)
D.
B(3; 3; -5)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì D thuộc đường thẳng d nên D(-2 + t; 3 - 2t; 1 - 2t). Ta có \overrightarrow{AC}(1; 2; 2),             \overrightarrow{AD}(t - 3; -2t + 3; -2t + 1) => [\overrightarrow{AC},\overrightarrow{AD}] = (-4; 4t - 7; -4t + 9)

Do đó SABCD = 3√2  ⇔ SACD = \frac{3\sqrt{2}}{2} ⇔ \frac{1}{2}\left|[\overrightarrow{AC},\overrightarrow{AD}]\right| = \frac{3\sqrt{2}}{2}                       

\frac{1}{2}\sqrt{32t^{2}-128t+146} = \frac{3\sqrt{2}}{2}

⇔ 32t2 -128t + 128 = 0 ⇔ t=2

Suy ra D(0; -1; -3).

Vì ABCD là hình bình hành nên \overrightarrow{AB} = \overrightarrow{DC}  => B(3; 3; 5).

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).